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ABSTRACT 
 
Using a system of five masses and four springs, both linear 
and non-linear changes in stiffness were detected by 
examining the frequency and time response of the system.  
The replacement of an individual spring with one of a 
different stiffness value created a linear change, while 
nonlinearities were introduced through the use of collisions 
between masses.  From the time history of the input force 
and the accelerations of each mass, the frequency response 
functions, natural frequencies, mode shapes, power spectra, 
and probability density functions were calculated.  These 
results were used, in conjunction with a numerical model, to 
detect changes in the system.  In general, the natural 
frequencies and mode shapes were the best identifiers for 
linear changes, while the power spectra and probability 
density functions best identified nonlinear changes. 
 
 
NOMENCLATURE 
 
[C]  Viscous damping matrix 
DOF  Degree-of-freedom 
[F] Input force vector 
[K] Stiffness matrix 
FFT Fast Fourier transform 
FRF Frequency response function 
[M] Mass matrix 
PDF Probability density function 
TFE  Transfer function estimator 
X  Position vector 
 
 
1 INTRODUCTION 
 
With the increased complexity of today’s dynamic systems, 
non-destructive damage detection in multiple DOF systems 
is crucial.  Damage detection based on vibration response 
could be used for evaluating buildings, bridges, aircraft, 
rockets, or any other device where the structural health is a 
concern. 
 
This project explores the possibility of using the vibration 
response of a system to identify both linear and nonlinear 

damage in a multiple DOF system.  While the physical 
design of this 5-DOF system is more analogous to a lab 
experiment than a real system, its dynamic behavior closely 
resembles that of a jointed structure.  Each joint has a 
stiffness, and when damaged, the stiffness may change in a 
linear or nonlinear manner.  This project presents a method 
of detecting damage in the joints of a multiple degree-of-
freedom system by analyzing the vibration response of that 
system. 
 
 
2 EXPERIMENTAL PROCEDURE 
 
2.1 Project Setup 
 
The 5-DOF system for this project consisted of five masses, 
connected by four springs.  The masses and stiffnesses of 
the original system components are given in Table 2.1.  The 
masses of the springs are included in the given mass terms. 
 

Table 2.1: Original System 
Item Mass 

(kg) 
Stiffness 

(N/m) 
Mass 5 0.1642  
Spring 4  2626.903 
Mass 4 0.06695  
Spring 3  11383.25 
Mass 3 1.30345  
Spring 2  25568.52 
Mass 2 0.28675  
Spring 1  56390.85 
Mass 1 6.87075  

 
The system was suspended vertically, with a rod 
constraining lateral motion, as shown in Figure 2.1.  Mass 1 
is the base mass, and Mass 5 the top.  The springs are 
numbered in the same manner, with the Spring 1 being the 
lowest spring, and Spring 4 the highest.    A shaker was 
attached to the bottom of Mass 1 with a threaded rod.  The 
spring-mass system was suspended by elastic cords 
connected to the bottom mass.  The purpose of the cords 
was to support the weight of the system, preventing damage 
to the shaker, without inhibiting the motion of the system.  A 



uniaxial accelerometer with a nominal sensitivity of 10 mV/g 
was attached to each mass, and a force transducer with a 
nominal sensitivity of 2.25 mV/g was located at the joint 
between the shaker and Mass 1. 

 
2.2 Testing method 
 
To find the vibration response for each mass, the system 
was excited with a shaped random input and the 
acceleration of each mass was recorded.  To alleviate noise 
problems in areas of low amplitude in the response, each 
linear trial was completed in two runs.  In the first run, the 
source had frequency content from 5-120 Hz.  A second run 
of approximately 100-300 Hz. was then made, based on the 
results of the low-range trial.  During the analysis of the data, 
the two runs were “spliced” together just above the highest 
frequency in the first run.  For the nonlinear comparison, 
though, the data was not spliced so that the high frequency 
harmonics and other resulting nonlinear content would not 
be overwritten.  For the nonlinear cases, the random input 
included frequency content from 5-100 Hz in each trial.  
 
2.2.1 Linear Changes 
 
To create linear changes in stiffness, the lower two springs 
were replaced with ones of lower stiffness.  Figure 2.2 shows 
a normal spring in the system.   

 
Figure 2.2: Spring and connection in system. 

A testing schedule for these runs is shown in Table 2.2.  The 
original system was run following the changes to quantify the 
variability caused by assembly and disassembly. 
 

Table 2.2: Linear Testing Schedule 
Run Date System Splices

1 7/3/2001 original  
2 7/3/2001 original 105-300
3 7/3/2001 k1=35200.5 N/m  
4 7/3/2001 k1=35200.5 N/m 90-300 
5 7/3/2001 k1=48335.01 N/m  
6 7/3/2001 k1=48335.01 N/m 105-300
7 7/3/2001 k2=21540.6 N/m  
8 7/3/2001 k2=21540.6 N/m 95-300 
9 7/3/2001 k2= 9631.98 N/m  

10 7/3/2001 k2= 9631.98 N/m 95-300 
11 7/5/2001 original  
12 7/5/2001 original 120-300

 
2.2.2 Nonlinear Changes 
 
The first nonlinear change to the system came from 
introducing bumpers between Mass 4 and Mass 5.  This was 
done by lowering the upper portion of the bumpers on their 
threaded rods and raising the lower section, as shown in 
Figure 2.3.  This change resulted in a nonlinear increase in 
the stiffness of Spring 4. Figure 2.1: 5-DOF System setup. 
 

 
Figure 2.3:  Nonlinear bumpers. 

 
A second nonlinear change was introduced by removing the 
bolts securing Spring 2 and replacing them with pieces of 
threaded rod, as shown in Figure 2.4.  This was first done 
with just the bottom set of bolts securing the spring to Mass 
2, and then to the bolts securing it to Mass 3.  This change 
prevented Spring 2 from going into tension, making its 
stiffness go to zero if Mass 3 moved further up than Mass 2. 
 

 
Figure 2.4: Nonlinear loose screws. 



For both nonlinear changes, the system was run at various 
input amplitudes to analyze the effect of the magnitude on 
nonlinearities in the system.  A testing schedule for the 
nonlinear runs is shown in Table 2.3.  
 

Table 2.3: Nonlinear Tests 
Run Date Amplitude Comments 
B1 7/10/2001 0.1 Bumpers 
B2 7/10/2001 0.2 Bumpers 
B3 7/10/2001 0.4 Bumpers 
B4 7/10/2001 0.6 Bumpers 
B5 7/10/2001 0.8 Bumpers 

NB1 7/10/2001 0.1 No Bumpers
NB2 7/10/2001 0.2 No Bumpers
NB3 7/10/2001 0.4 No Bumpers
NB4 7/10/2001 0.6 No Bumpers
L2-1 7/12/2001 0.1 Loose at m2
L2-2 7/12/2001 0.2 Loose at m2
L2-3 7/12/2001 0.4 Loose at m2
L2-4 7/12/2001 0.6 Loose at m2
L3-1 7/12/2001 0.1 Loose at m3
L3-2 7/12/2001 0.2 Loose at m3
L3-3 7/12/2001 0.4 Loose at m3
L3-4 7/12/2001 0.6 Loose at m3

 
 
2.3 Data Acquisition 
 
The data acquisition was performed using a DACTRON 
Spectrabook, an eight channel 24-bit spectral analyzer, 
and the corresponding RT Pro software.  The time 
responses, FRF’s, and coherence data were all collected 
from the software.  The FRF’s were calculated using 20 
averages at a sampling frequency of 640 Hz., while a 
Hanning window was applied to each average to reduce 
leakage. 
 
 
3 DATA ANALYSIS 
 
3.1 Frequency Response 
 
FRF plots were computed for the theoretical model using the 
TFE function in Matlab.  From a time history acquired in 
Simulink, TFE first windows the data, performs an FFT on 
the windowed sections, estimates the auto spectrum, and 
finally calculates the transfer function from the cross spectra 
and auto spectra.  The experimental FRF’s were similarly 
calculated by the DACTRON system.  An important 
assumption made for the calculations is that the system is 
linear and time invariant [1].   
 
3.2 Modal Analysis 
 
For the 5-DOF system there are five natural frequencies, 
with five corresponding mode shapes.  The first mode shape 
is the rigid body mode, corresponding to a 0 Hz natural 
frequency.  The other four mode shapes correspond to the 
nonzero natural frequencies.   
 

The experimental data was imported into Vibrant 
Technology’s ME’scope in order to find the experimental 
mode shapes and natural frequencies.  ME’scope uses 
curve fit estimation to find the mode shapes and natural 
frequencies from the FRF’s. 
 
The theoretical mode shapes were calculated by finding the 
eigenvalues and eigenvectors of the mass and stiffness 
matrices.  The eigenvalues represent the natural frequencies 
while the eigenvectors, when mass normalized, represent 
the mode shapes [2].   
 
Comparison between the theoretical and experimental mode 
shapes helped validate the theoretical model.  Figure 3.1 
shows the theoretical and experimental mode shapes for the 
original system. 
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Figure 3.1: Mode shapes for original system 

 
 
4 ANALYTICAL MODELS 
 
In order to verify the experimental results, numerical models 
of the system were established in Simulink.  
 
4.1 Linear Model 
 
For the linear model, the equations of motion were put into 
matrix form: 
 

[ ] ][][][ FXKXCXM =++ &&&           4.1 
 
The block diagram for the linear model was derived directly 
from this equation. 
 
4.2 Non-linear Model 
 
For the nonlinear system, the matrix form of the equations of 
motion could not be used.  A block diagram segment for 
each mass had to be derived and formed.  Switch blocks in 
Simulink were used to represent the nonlinearities that 
were added to the physical system.  



 
5 COMPARISON METHODS 
 
5.1 Linear Changes 
 
5.1.1 FRF’s 
 
The FRF’s of the system were used to visualize the changes 
imparted to the system resulting from modification of the 
spring stiffnesses.  They give an overall view of the system, 
but do not help pinpoint the location of the changes made to 
it [3].  Figure 5.1 shows the FRF’s for the original system. 
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Figure 5.1: Experimental frequency response functions for the 

original system. 
 
The FRF’s were also useful for gauging whether the original 
system was truly linear.  Often, for a nonlinear system, 
harmonics of the natural frequencies are visible on the FRF 
[3].  This feature of a nonlinear system was observed for the 
5-DOF system, as harmonics were observed for the fourth 
natural frequency of the system.  Since the mode shape 
corresponding to this frequency indicated that Mass 2 
experienced the greatest motion, the non-linearity in the 
original system was most likely related to the motion of Mass 
2. 
 
5.1.2 Natural Frequencies 
 
Changing different stiffnesses in the system brought about 
many changes in the response, but the most obvious change 
was in the natural frequencies.  To evaluate this change, the 
difference between the new natural frequencies and those of 
the original system were calculated and plotted.  Figure 5.2 
shows these differences plotted against the mode number 
for the four non-zero natural frequencies in the system.  The 
largest changes occur at the first and fourth frequencies for 
changes in the stiffness of Spring 1 or 2.  When the stiffness 
of Spring 1 was reduced, the greatest change occurred in 
the fourth natural frequency.  Lowering the stiffness of 
Spring 2 varied the first and fourth frequencies, but the 
change observed in the fourth frequency is almost twice the 
change in the first frequency.  Included in the plot is the 
difference in frequencies for the two separate runs of the 
original system.  The difference in frequencies between 

those runs is much less than the difference for the cases 
where the springs were changed; showing that changing the 
springs does make a significant difference. 
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Figure 5.2: Frequency differences. 

 
5.1.3 Mode Shapes 
 
The mode shapes are valuable for illustrating the behavior of 
each mass at the natural frequencies.  To evaluate the 
changes imparted to the system, the difference between the 
new mode shapes and those of the original system were 
calculated and plotted.  When replacing the first spring with a 
less stiff spring, modes three and four were affected the 
most.  The shape of modes one and two were most affected 
by a change to the stiffness of Spring 2.  The experimental 
variability was also plotted, showing that the effects of 
changing the springs is significant. 
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Figure 5.3: Experimental mode shape differences. 

 
5.2 Nonlinear Changes 
 
For the nonlinearities added to the original system, the 
FRF’s, natural frequencies, and mode shapes did not 
change greatly.   Different metrics were needed to identify 
the nonlinearities in the system.  This identification was done 
using the power spectra and probability density functions.   



 
5.2.1 Power Spectra 
 
In the frequency domain, the power spectra of an ideal 
impact looks like a horizontal line [2].  The power spectra of 
an impacting nonlinear system should appear fairly 
horizontal, even past the highest excitation frequency.  This 
phenomenon was used in this system as a way to identify 
nonlinearities.  For both types of nonlinearities, the power 
spectra of the accelerations of the masses closest to the 
nonlinearities contained more high frequency content than 
the linear system.  This response was observed for both the 
theoretical and experimental data.   
 
More high frequency content is present in the power spectra 
for Mass 4 and Mass 5, which are located nearest to the 
non-linearity in the bumper case.  This result is shown for 
both the theoretical and experimental systems in Figures 5.4 
and 5.5, respectively. 
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Figure 5.4: Theoretical power spectra for bumper system. 
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Figure 5.5: Experimental power spectra for bumper system. 
 
 
 
The loose model gave the same results as the bumper 
model, with higher frequency content near the non-linearity, 
especially in the power spectra of Mass 2 and Mass 3.  This 
result is shown for the theoretical and experimental cases in 
Figures 5.6 and 5.7, respectively. 
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Figure 5.6: Theoretical power spectra for loose system. 
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Figure 5.7: Experimental power spectra for loose system. 

 
 
5.2.2 Probability Density 
 
Deviation from a Gaussian probability density function (PDF) 
is often the result of nonlinear damage in a system [3].  



Based on this fact, the difference between the PDF of the 
nonlinear runs and a Gaussian distribution was calculated 
and plotted to help identify nonlinearities.  The results 
showed that for the linear system, the PDF was very close to 
Gaussian.  Both nonlinear systems, however, showed 
deviation from a Gaussian distribution at the location of the 
nonlinearities.  Figures 5.8 and 5.9 show a larger deviation 
from a Gaussian distribution in the PDF of Mass 4, which 
was located closest to the non-linearity of the bumper 
system. 
 
Figures 5.10 and 5.11 show the same results for the loose 
system.  The PDF of Mass 2, which is closest to the non-
linearity, deviates more from a Gaussian distribution when 
the non-linearity is introduced. 
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Figure 5.8: Theoretical PDF for bumper system. 
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Figure 5.9: Experimental PDF for bumper system. 
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Figure 5.10: Theoretical PDF for loose system 
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Figure 5.11: Experimental PDF for loose system. 

 
 
5.2.3 FRF’s 
 
While linear stiffness changes resulted in shifts in the natural 
frequencies, nonlinear changes such as bumper collision 
and bolt loosening did not produce consistent changes.  
Both nonlinearities produced high levels of noise on the FRF 
plot lines.   The FRF plots also showed locations of the 
nonlinearities because the FRF’s for the masses were 
noisiest near the nonlinearities.  The FRF’s were useful for 
generalizing the presence of a non-linearity, but the power 



spectra and probability density functions were more powerful 
for pinpointing them. 
 
 
6 CONCLUSIONS 
 
For multi-DOF systems, linear changes to the stiffness 
mainly impact the natural frequencies and mode shapes.  
This result could easily be seen in the FRF’s for the 5-DOF 
system in this project.  In general, decreasing the stiffness of 
any spring resulted in lowering the natural frequencies of the 
system. For the 5-DOF system, changes to the stiffness of 
the first spring lowered the fourth natural frequency and 
changed the shape of the third and fourth modes.  Changes 
in the stiffness of Spring 2 had a greater effect on the first 
two modes, and the first and fourth natural frequencies.  
Although these changes were seen, no concrete method of 
identifying the location of the linear change was determined. 
 
For nonlinear changes to the system, the FRF’s did not 
change noticeably.  The changes were detected, however, 
by examining the power spectra and probability density 
functions of each object in the system.  The masses closest 
to the non-linearity show more high frequency content in 
their power spectra than they would show in a linear system. 
The PDF’s of the masses closest to the nonlinear diverge 
from a Gaussian distribution, and are another good way of 
identifying non-linearity in the system. 
 
If the experiment were run again, it would help to try different 
types of inputs.  A stepped sine input would help single out 
some of the nonlinearities inherent to the system.  More time 
could also be spent on identifying and eliminating some of 
the nonlinearities in the original system.  The stiffness of 
some of the springs may be bilinear, causing harmonics of 
the natural frequencies, but there was not enough time to 
investigate this phenomenon. 
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